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J. Phys. A :  Math., Nucl. Gen., Vol. 6, May 1973. Printed in Great Britain. Q 1973 

On the Petrov classification of gravitational fields 

G S Hall? 
School of Mathematics, University of Newcastle Upon Tyne, Newcastle Upon Tyne 
NE1 7RU, UK 

MS received 11 December 1972 

Abstract. An intuitive directional symmetry for a null direction with respect to a given 
local Lorentz observer is suggested. It is shown that the existence of a null direction with 
such a symmetry with respect to the given Lorentz observer implies that the null direction 
is a Debever-Penrose direction. A weak converse is also given. In the vacuum case it is 
shown that the existence of such a null direction is equivalent to the space-time being 
algebraically special in the Petrov classification and having that null direction as a repeated 
principal null direction. The results are generalized to non-vacuum space-times. Finally 
it is suggested how a vacuum space-time might be classified according to the type of sym- 
metries it possesses. 

1. Introduction : the Petrov classification 

A convenient means of classifying gravitational fields in general relativity theory is 
provided by the canonical forms of Petrov. This procedure is a systematic study of the 
various algebraic forms (types) which may be assumed by the Weyl tensor, C o b c d  of the 
space-time manifold$. On denoting the Riemann tensor, Ricci tensor and Ricci scalar 
by R a b c d ,  R o b  and R reSpeCtiVely, One has Rob = Rcobdgcd, R = Robgab and 

where gab is the space-time metric tensor. I n  vacuo, one has the equivalent conditions 

Of the many different approaches to the Petrov classification of the Weyl tensor 
(Riemann tensor in vacuo) the elegant Bel criteria (Bel 1962) will be most useful here. 
One of Bel's results is that a Weyl tensor is algebraically special in the Petrov classifi- 
cation if and only if there exists a (necessarily null) real principal direction I" # 0 such 

= Cabcd = Rabcd.  

+ 
that ~ " ~ c c a ~ c ~ ~ ~ , ~  = 0 ( C a b c d  # 0) where 

-k * 
Cabed = Cabcd + iCabcd 

;abed = $ \ / - g q a b m n C m n c d  = ? f / - g q m n c d C o b m n *  

t Earl Grey Memorial Fellow. 
Small Latin indices take the values 0, 1, 2, 3. Round and square brackets denote the usual symmetrization 

and antisymmetrization respectively. The metric signature will be taken as +2, the symbol g denotes det(g,,,) 
and tlakd will represent the Levi-Civita alternating symbol. A comma will denote a partial derivative and a 
semicolon a covariant derivative. An asterisk will denote the usual duality operator. 
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Algebraically special space-times can also be characterized by the single real condition 
/"~'C,~,[d~,]  = 0 if  I" is given to be null, or by the Bel equations 

In Petrov type D space-times there are two choices of the principal null direction I " .  
For other algebraically special space-times the principal direction 1" is uniquely deter- 
mined to within a sign. In Petrov type I11 or N space-times x = p = 0. Finally, a real 

direction I" is said to be a Debever-Penrose direction if ~bl'~[,Ca]bc[d/,] = 0. Such a 
direction is necessarily null. This condition can be replaced by the single real condition 
/ b / ' / [ , C a ] b c [ d / , ]  = 0 if I" is given to be null?. 

The object of the present paper is to give a simple interpretation of algebraically 
special space-times, especially those space-times which represent vacuum gravitational 
fields. 

One final definition is required. The symbol K(n ,  n ' )  will denote the riemannian 
curvature of the elementary two-space spanned by the vectors na and n'". Thus 

+ 

- Rabcdnancn'bn'd 
2ga[cgdlbnancn'bn'd 

K(n,  n') = (ga[~gd]bn"n'n'~n'~ # 0). 

This definition, apart from an unimportant sign, agrees with that given by 
(1966). For the remainder of the paper only the case Cabcd  # 0 is considered. 

(1.3) 

Eisenhart 

2. Riemann symmetries 

Suppose I" is a real null vector field defined in a region of a space-time manifold. Let 
P be a point of this region at which a local Lorentz observer 0 is introduced such that 
with respect to 0 at P, I" = Sl; + 6:. Consider the 'cone' of vectors {r", A )  for 0 at P 
for a fixed non-zero parameter A and variable parameters p and 1, given by 

{r" ,  A ]  = { r " :  r" = Ax"+py"+E.z") 

x" = d;, 4'" = s;, z" = s.,, p 2 + i 2  = 1 ( 2 . 1 )  

lay, = Pz, = yaza = X"2, = xay, = PI, = 0. 

We shall call I" Riemann symmetric for 0 at P if K(1, r )  is independent of p and EL at P 
and completely Riemann symmetric for 0 at P if K(1, r )  is independent of p ,  i. and A 
at P. Thus I" is Riemann symmetric for 0 at P if and only if 

( 2 . 2 )  

By defining Fbd = Rabcdlalc = Fdb,  the symmetries of the Riemann tensor yield Fabib = 0. 
Then by using r" given in (2 .1)  and the condition (2.2) (remembering the restriction 
p 2 + j . ,  = 1) one easily finds in the frame 0 that F , ,  = F , ,  = F, ,  = F20 = F30 = 0,  
F22 = F,,, F , ,  = - F o l  and F , ,  = -Foe. Hence one may represent Fab in terms of 
two invariants F and G in the canonical form 

K(1, r )  = A-2Rabcdla lcrbrd ,  is independent of p and /I at P. 

Fbd = RabcdI"P = G/b/,j + F(ybyd + zbzd) .  ( 2 . 3 )  

t As well as Bel's paper, a thorough discussion of the Petrov forms can be found in Sachs' paper (Sachs 1961). 
One recalls that the Petrov types N, 111, I1 and D correspond to the types 3b, 3a, 2b and 2a respectively in Bel's 
notation. 
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Equation (2 .3)  is the necessary and sufficient condition that 1" be Riemann symmetric 
for 0 at P. In fact i t  is clearly the necessary and sufficient condition that 1" be Riemann 
symmetric for 0' at P where 0' is any member of a two-parameter set of Lorentz 
observers obtained from 0 by a combination of a Lorentz boost in the x" direc- 
tion and a spacelike rotation in the y z  plane. By using the completeness relation 
g a b  = 21(,mb) + y a y b  + zazb, where ma is a null vector uniquely determined by the conditions 
maya = m'z, = mama = 0, I'm, = 1, together with the equations (1.1) and (2 .3)  one 
easily finds the condition ~b~'~[,Ca]bc[dI,] = 0. Thus 1" is a Debever-Penrose vector. A 
weak converse can also be proved here. If I" is a Debever-Penrose vector at P, then it 
easily follows that there exists a vector q" at  P with l"q, = 0 and laICCnbcd = 2\(&,. Next, 
suppose that Rabl"lb # 0 at P. Then the vectors 1" and p a  = q"++R; l b  determine a null 
direction 1'" distinct from 1" and unique up to sign lying in the elementary two-space 
spanned by I" and pa. It is then easy to show that the null direction E" is Riemann sym- 
metric at P for any member of the two-parameter set of Lorentz observers whose space- 
like elementary two-spaces spanned by y" and z" in the sense of (2 .1)  are orthogonal to 
both 1" and 1'". The proof consists of constructing Rabcdlalc from (1.1) using the above 
Debever-Penrose condition on C a b c d  and then comparing with (2.3). Collecting these 
results together one has the following theorem. 

Theorem 1 

If a null direction is Riemann symmetric for some observer at a point P, then it is a 
Debever-Penrose direction at P. Conversely if 1" is a Debever-Penrose direction at P 
and Rabl"lb # 0 at P, then the Weyl tensor and Ricci tensor determine a two-parameter 
set of Lorentz observers for whom 1" is Riemann symmetric at P. 

If Rabl"lb = 0 at P it will become apparent (see the remarks following (2 .4))  that either 
I" is completely Riemann symmetric at P or it is not Riemann symmetric for any 0 at P. 

Next, from (2 .3)  it follows that 

(2.4) 

whilst a simple contraction of (2 .3)  yields Rabl"lb = - 2 F .  Thus if 1" is Riemann sym- 
metric for 0 at P, i t  is completely Riemann symmetric for 0 at P if and only if 

So far, only the Riemann symmetry properties of 1" with respect to a two-parameter 
set of Lorentz observers have been considered. All these Lorentz observers have the 
same elementary spacelike two-surface spanned by their respective y and z axes. In 
order to extend this concept, the direction 1" shall be called Riemann symmetric at P if 
and only if K(1, r )  is independent of ,U and I for all Lorentz observers at  P for which 
I" a 6: + 6: and completely Riemann symmetric at  P if and only if K(1, r )  is independent 
of ,U, I and A for all such Lorentz observers at P. Then I" is Riemann symmetric at P if 
(2 .2)  holds for each member of a four-parameter collection of Lorentz observers con- 
nected by the well known 'null rotation' subgroup of the homogeneous Lorentz group. 
Two of these parameters are of course the two mentioned above. The other two- 
parameter set of observers have different spacelike elementary two-surfaces spanned by 
y and z. Mathematically this extra condition means that (2 .2)  must remain 'invariant' 
under the two-parameter null rotations given by? 

(2 .5)  

K(1, r )  = A-2RabcdlalCrbrd = G+ A - 2 F  

F =  -- ;Ra&"lb = 0. 

y" + y'" = y"+al" Z" -B z'" = Z" + bl". 

t A discussion of null rotations can be found in the paper by Sachs (1961). 
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From (2.3) this clearly implies that F = -~RabI"Ib = 0. It then follows that if 1" is 
Riemann symmetric at P then it is completely Riemann symmetric at P. On collecting 
these results together one has the following theorem. 

Theorem 2.  

A null direction I" is Riemann symmetric for 0 at P if and only if (2.3) holds at  P. This 
null direction is completely Riemann symmetric for 0 at P if and only if (2.3) holds with 
F = 0 at P, which in turn holds if and only if I" is Riemann symmetric, equivalently 
completely Riemann symmetric, at  P. 

Finally, one can easily show from (1.1) that any two of the following conditions for 
a null direction 1" imply the third : 

l " l c c a b c [ d l , ]  = O, ~"l'Ra,,,,jl,, = 0, R a b l b  = 01, (2.6) 

where cr is an invariant. Then since for a Riemann symmetric null direction I" one has 
from (2.3) with F = 0 

Rabc&"lc = G l b l d  (* Ia l 'Rabc[d le]  = O) (2 .7 )  

one easily obtains the following theorem. 

Theorem 3. 

If a null direction I" is Riemann symmetric at P, then the Weyl tensor is algebraically 
special in the Petrov classification at P with repeated principal null direction I" if and 
only if I" is a Ricci eigenvector at  P. 

For a vacuum field this latter condition is trivially satisfied whilst for a null Maxwell- 
Einstein field with Ricci tensor proportional to 1,1,, the null direction I" is necessarily 
Riemann symmetric since a null Maxwell field either has C a b c d  = 0 or is algebraically 
special with repeated principal null direction I" (Goldberg and Sachs 1962). 

3. Vacuum gravitational fields 

For vacuum gravitational fields one can utilize the notion of Riemann symmetries to 
obtain the following restatement of Petrov's classification. If it is agreed to call a 
congruence of null curves Riemann symmetric in a four-dimensional region R if the 
tangent vector at a point P of the congruence is Riemann symmetric for all points P of 
R, then one has the following results. A non-flat four-dimensional region R of a vacuum 
space-time is algebraically special in the Petrov classification if and only if i t  admits a 
Riemann symmetric null congruence 1". This direction is a repeated principal null 
direction. The region R is Petrov type N or I11 if and only if K(1, r )  = 0 throughout R, 
whence the congruence I" is necessarily unique. Further, if 1" is unique and K(1, r )  # 0 
then R is of Petrov type I1 and, conversely, if R is of Petrov type I1 then a single null 
Riemann symmetric congruence is admitted with K(1, Y) # 0 in general at  all points of 
R except perhaps on certain subspaces of R. Finally if R admits two distinct Riemann 
symmetric null congruences, I" and ma then it is Petrov type D and conversely. Neces- 
sarily K(1, Y) = K ( m ,  r')? and their common value is non-zero in general except perhaps 
on certain subspaces of R. 

t Here, r" is given with respect to ma in a similar way to which r4 was given with respect to P. 
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The proof of these statements is mostly contained in 8 2. It is only required to show 
that for type I1 and D vacuum space-times, U = 0 * /I = 0 in the notation of (1.2). To 
show this one firstly substitutes the canonical form for a type I1 vacuum Riemann tensor 

(Bel 1962, Debever 1959) into the vacuum Bianchi identity (&,cd+i&,cd);d = 0 and 
contracts with PI'. Then by using (1.2) together with some calculation one finds 

(3.1) 
where % and o represent the expansion and twist of I" respectively?. By a similar argu- 
ment one can obtain expressions like (3.1) for both repeated principal null directions 
of a vacuum type D field. Suppose now that one has a type I1 or D field with U = 0, 
fi # 0. Then by (3.1) the principal null direction(s) is(are) twist-free. Also, by the 
Goldberg-Sachs theorem (Goldberg and Sachs 1962) the principal null direction(s) 
must also be shear-free since Rabcd is algebraically special. It then follows that the 
metric in R can be reduced to one of the Robinson-Trautman metrics (Robinson and 
Trautman 1962) or one of the Kundt metrics (Kundt 1961). However, in the former 
case, p = 0 always. In the latter case the line element can be written in the form 

* 

u,,lS + 3a% - = B,,I" + 3ge + 4ao = 0 

ds2 = P2(dx2 + dy2) + 2m, dx" du (3.2) 
where m3 = 1, x4 = U = constant, represents hypersurfaces orthogonal to 1, = U,", 
x3 = U is an affine parameter along the paths of I" and P , 3  = 0 -= P .  The condition 
U = 0 when applied to (3.2) yields 

(8: 12+-iz 8:) (1nP) = 0. 

This condition however implies the existence of a coordinate transformation reducing 
the metric to the form (3.2) with P = 1 (Kundt 1961) which, Kundt then demonstrated, 
implied that the space-time was type I11 or N. This completes the proof. 
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